In this installment of How Accidents Happen we continue looking at personnel & management as contributing factors in hyperbaric facility accidents.
Rx Pad
When one commences a task to reconstruct how an accident happened, personnel and management factors are often “at the head of the class.” Some of the more commonly occurring factors are discussed in this section. It should be noted, however, that this list is not all-inclusive. The factors that can contribute to accidents are many and varied. As technology and operations become ever more complex, our ability to create new ways to “do ourselves in” are amazing.
For some accidents there is a clear “smoking gun.” However, most accidents are caused by a combination of factors, each of which contributes in some manner. Often these factors accumulate over some period of time preceding the accident. This chapter addresses the factors that foster conditions under which accidents are more likely to happen and discusses some of the steps to be taken to avoid them. Also included is a case history illustrating several of the factors.
Type of Acrylic Windows used in Hyperbaric Multiplace and Monoplace Chambers
In today’s clinical and diving hyperbaric chambers, acrylic windows with PVHO-1 defined standard geometries and design criteria are used.1 Acrylic window shapes vary with chamber type and the window requirement of the specific chamber type.
Determining the best interventions, including dressing selection, for patients and their wounds requires looking at the situation holistically. Creating the treatment plan for a chronic wound is dependent upon many diverse patient, wound, economic, and social considerations. The dressing selection goes beyond simply choosing a product to cover the wound. Detailed assessments of the patient and wound should drive the components of goal-directed wound care. The health-care provider must determine the etiology of the wound, patient comorbidities that may impair the wound healing processes (e.g. diabetes and blood glucose levels), nutrition/hydration status, systemic and local tissue oxygenation, and patient/family concerns such as pain and odor issues. Each of these factors contributes to creating an individualized plan of care for choosing the most appropriate products and interventions.
Analysis of hyperbaric facility risks is a difficult process. It begins with identifying the hazards in a hyperbaric facility. These hazards could be from a variety of sources: equipment related (e.g. loss of power, loss of gas supply, control system malfunction); operational (e.g. untrained or unprepared staff); medical (e.g. pressure injuries, medical complica- tions); and environmental (e.g. contaminants, external disaster). The actual risks associated with a hazard depend on the probability, frequency, and severity of the potential losses.
Hyperbaric emergency procedures usually address a variety of problems ranging from mechanical malfunction to medical complications—important events that do not seem to share a common trait but cover a wide range of situations. Such a variable group of events must be discussed in a broad context. This chapter will discuss emergency pro- cedures within the framework of the entire hyperbaric safety program. In this broader context, events that may or may not be emergencies belong together. That is why this dis- cussion will replace the term “emergency procedure” with the term “contingency plan.”
A consensus document by Keast et al. reviewed clinically useful wound measurement approaches. This evidence-based document provided an overview of principles and practice regarding chronic wound assessment in a simple mnemonic format. The text articulated effective management of a nonhealing wound based upon:
Various theories have been proposed to explain why some wounds become chronic and non-healing. Although the complete answer is not yet available, a great deal has been learned in recent years that sheds light on this phenomenon.